
Prototype Classification:
Insights from Machine Learning

Arnulf B.A. Graf∗, Olivier Bousquet†,
Gunnar Rätsch‡& Bernhard Schölkopf§

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

March 21, 2008

Abstract

We shed light on the discrimination between patterns belonging to two different
classes by casting this decoding problem into a generalized prototype framework.
The discrimination process is then separated into two stages: a projection stage that
reduces the dimensionality of the data by projecting it on a line, and a threshold
stage where the distributions of the projected patterns of both classes are separated.
For this, we extend the popular mean-of-class prototype classification using algo-
rithms from machine learning that satisfy a set of invariance properties. We report
a simple, yet general, approach to express different types of linear classification al-
gorithms in an identical and easy-to-visualize formal framework using generalized
prototypes where these prototypes are used to express the normal vector and offset
of the hyperplane. We investigate non-margin classifiers such as the classical proto-
type classifier, the Fisher classifier and the relevance vector machine. We then study
hard and soft margin classifiers such as the support vector machine, and a boosted

∗Present address: Center for Neural Science, New York University, USA – email:
arnulf.graf@nyu.edu

†Present address: Pertinence, France – email: olivier.bousquet@pertinence.com
‡Present address: Friedrich Miescher Laboratory of the Max Planck Society, Germany – email:

Gunnar.Raetsch@tuebingen.mpg.de
§email: bernhard.schoelkopf@tuebingen.mpg.de

1

version of the prototype classifier. Subsequently, we relate mean-of-class prototype
classification to other classification algorithms by showing that the prototype classi-
fier is a limit of any soft margin classifier, and that boosting a prototype classifier
yields the support vector machine. While giving novel insights into classification per
se by presenting a common and unified formalism, our generalized prototype frame-
work also provides an efficient visualization and a principled comparison of machine
learning classification.

1 Introduction

Discriminating between signals, or patterns, belonging to two different classes is a
widespread decoding problem encountered for instance in psychophysics, electrophys-
iology, and computer vision. In detection experiments, a visual signal is embedded
in noise, and a subject has to decide whether a signal is present or absent. The
2-alternative forced choice task is an example of a discrimination experiment where
a subject classifies two visual stimuli according to some criterion. In neurophys-
iology, many decoding studies deal with the discrimination of two stimuli on the
basis of the neural response they elicit, either in single neurons or in populations
of neurons. Furthermore in many engineering applications such as computer vision,
pattern recognition and classification (Duda et al., 2001; Bishop, 2006) are some of
the most encountered problems. Although most of these applications are taken from
different fields, they intrinsically deal with a similar problem: the discrimination of
high-dimensional patterns belong to two possibly overlapping classes.

We address this problem by developing a framework—the prototype framework—that
decomposes the discrimination task into a data projection, followed by a threshold
operation. The projection stage reduces the dimensionality of the space occupied by
the patterns to be discriminated by projecting these high-dimensional patterns on
a line. The line on which the patterns are projected is unambiguously defined by
any two of its points. We propose to find two particular points that have a set of
interesting properties, and call them prototypes by analogy to the mean-of-class pro-
totypes widely used in cognitive modeling and psychology (Reed, 1972; Rosch et al.,
1976). The projected patterns of both classes then define two possibly overlapping
one-dimensional distributions. In the threshold stage, discrimination (or classifica-
tion) simply amounts to set a threshold between these distributions, similarly to
what is done in signal detection theory (Green and Swets, 1966; Wickens, 2002).
Linear classifiers differ by their projection axis and by their threshold, both of them

2

being explicitly computed in our framework. While dimensionality reduction per se
has been extensively studied, using for instance Principal Component Analysis (Jol-
liffe, 2002), Locally Linear Embedding (Roweis and Saul, 2000), Non-negative Matrix
Factorization (Lee and Seung, 1999), or neural networks (Hinton and Salakhutdinov,
2006), classification-specific dimensionality reduction as considered in this paper has
surprisingly been ignored so far.

As mentioned above, the data encountered in most applications is high-dimensional
and abstract, and both classes of exemplars are not always well “separable”. Machine
learning is ideally suited to deal with such classification problems by providing a
range of sophisticated classification algorithms (Vapnik, 2000; Duda et al., 2001;
Schölkopf and Smola, 2002; Bishop, 2006). However, these more complex algorithms
are sometimes hard to interpret and visualize, and do not provide good intuition as
to the nature of the solution. Furthermore, in the absence of a rigorous framework,
it is hard to compare and contrast these classification methods with one other. This
paper introduces a framework that puts different machine learning classifiers on the
same footing, namely that of prototype classification. While classification is still
done according to the closest prototype, these prototypes are, however, computed
using more sophisticated and more principled algorithms than simply averaging the
examples in each class as for the mean-of-class prototype classifier.

We first present properties that linear classifiers, also referred to as hyperplane clas-
sifiers, must satisfy in order to be invariant to a set of transformations. We show that
a linear classifier with such invariance properties can be interpreted as a generalized
prototype classifier where the prototypes define the normal vector and offset of the
hyperplane. We then apply the generalized prototype framework to three classes
of classifiers: non-margin classifiers (the classical mean-of-class prototype classifier,
the Fisher classifier and the relevance vector machine), hard margin classifiers (the
support vector machine, and a novel classifier—the boosted prototype classifier), and
soft margin classifiers (obtained by applying a regularized preprocessing to the data,
and then classifying this data using hard margin classifiers). Subsequently we show
that the prototype classifier is a limit of any soft margin classifier, and that boosting
a prototype classifier yields the support vector machine. Numerical simulations on
a two-dimensional toy dataset allow us to visualize the prototypes for the different
classifiers, and finally the responses of a population of artificial neurons to two stimuli
are decoded using our prototype framework.

3

2 Invariant linear classifiers

In this section, we define several requirements that a general linear classifier—a
hyperplane classifier—should satisfy in terms of invariances. For example, the algo-
rithm should not depend on the choice of a coordinate system for the space in which
the data is represented. These natural requirements yield non-trivial properties of
the linear classifier that we present below.

Let us first introduce some notation. We assume a two class dataset D = {xi ∈
X , yi = ±1}n

i=1 of n examples. We denote by x1, . . . ,xn the input patterns (in
finite dimensional spaces, these are represented as column vectors), elements of an
inner product space X , and by y1, . . . , yn their labels in {−1, 1} where we define
by Y± = {i|yi = ±1} the two classes resulting from D and by n± = |Y±| their
size. Let y be the vector of labels, and X denote the set of input vectors; in finite
dimensional spaces, X = {xi}n

i=1 is represented as a matrix whose columns are the
xi. A classification algorithm A takes as input a dataset D and outputs a function
f : X → R whose sign is the predicted class. We are interested in specific algorithms,
typically called linear classifiers, that produce a signed affine decision function:

g(x) = sign(f(x)) = sign(wtx + b) , (1)

where wtx stands for the inner product in X and the sign function takes values
sign(z) = −1, 0, 1 according to whether z < 0, z = 0 or z > 0 respectively. For
such classifiers, the set of patterns x such that g(x) = 0 is a hyperplane called the
separating hyperplane (SH), which is defined by its normal vector w (sometimes also
referred to as the weight vector) and offset b. A pattern x belongs to either side
of the SH according to the class g(x) (a pattern on the SH does not get assigned

to any class). The function f(x) is proportional to the signed distance f(x)
‖w‖ of the

example to the separating hyperplane. Since X is a (subset of a) vector space, we
can consider that the dataset D is composed of a matrix X and a vector y. We can
now formulate the notion of invariance of the classifiers we consider.

Definition 1 (Invariant classifier) Invariance of A(X, y)(x) with respect to a cer-
tain transformation (Tx, Ty) (where Tx applies to the X space while Ty applies to the
Y space) means that for all x and all (X, y),

A (Tx(X), Ty(y))(Tx(x)) = Ty(A(X, y)(x)) .

Put in less formal words, an algorithm is invariant with respect to a transformation if
the produced decision function does not change when the transformation is applied to

4

all data to be classified by the decision function. We conjecture that a “reasonable”
classifier should be invariant to the following transformations:

• Unitary transformation. This is a rotation or symmetry, i.e. a transforma-
tion which leaves inner products unchanged. Indeed if U is a unitary matrix,
(Ux)t(Uy) = xty. This transformation affects the coordinate representation
of the data but should not affect the decision function.

• Translation. This corresponds to a change of origin. Such a transformation
u changes the inner products (x + u)t(y + u) = xty + (x + y)tu + utu but
should not affect the decision function.

• Permutation of the inputs. This is a reordering of the data. Any learning
algorithm should in general be invariant to permutation of the inputs.

• Label inversion. In the absence of information on the classes, it is reasonable
to assume that the positive and negative classes have an equivalent role, so that
changing the signs of the data should simply change the sign of the decision
function.

• Scaling. This corresponds to a dilation or a retraction of the space. It should
also not affect the decision function since in general, the scale comes from of
an arbitrary choice of units in the measured quantities.

When we impose these invariance to our classifiers, we get the following general
proposition (see Appendix A for the proof).

Proposition 1 A linear classifier which is invariant w.r.t. unitary transformations,
translations, inputs permutations, label inversions and scaling produces a decision
function g which can be written as

g(x) = sign

(
n∑

i=1

yiαix
t
ix + b

)
, (2)

with
n∑

i=1

yiαi = 0,
n∑

i=1

|αi| = 2

and where αi depends only on the relative values of the inner products and the differ-
ences in labels and b depends only on the inner products and the labels. Furthermore,
in the case where xt

ixj = λδij, for some λ > 0, we have αi = 1/n±.

5

The normal vector of the SH is then expressed as w =
∑

i yiαixi. For a classifier
satisfying the assumptions of Proposition 1, we call the representation of Equation
(2) the canonical representation. In the next proposition (see Appendix B for the
proof), we fix the classification algorithm and vary the data, as for example when
extending an algorithm from hard to soft margins (see Section 6).

Proposition 2 Consider a linear classifier which is invariant w.r.t. unitary trans-
formations, translations, input permutations, label inversions and scaling. Assume
that the coefficients αi of the canonical representation in Equation (2) are continu-
ous at K = I (where K is the matrix of inner products between input patterns and
I the identity matrix). If the constant δij/C is added to the inner products, then, as
C → 0, for any dataset, the decision function returned by the algorithm will converge
to the one defined by αi = 1/n± .

For most classification algorithms, the condition
∑

i |αi| = 2 can be enforced by
rescaling the coefficients αi. Furthermore, most algorithms are usually rotation in-
variant. However, they depend on the choice of the origin and are thus not a priori
translation invariant, and in the most general case, the dual algorithm may not sat-
isfy the condition

∑
i yiαi = 0. One way to ensure that the coefficients returned

by the algorithm do satisfy this condition directly is to center the data, the prime
denoting a centered parameter:

x′
i = xi − c where c =

1

n

∑
i

xi (3)

Setting γi = αiyi, we can write:

w′ =
∑

i γ
′
ix

′
i =

∑
i γ

′
ixi − 1

n

∑
i γ

′
i

∑
j xj =

=
∑

i

(
γ′i − 1

n

∑
j γ′j

)
xi

.
=
∑

i γixi = w

where γi = γ′i − 1
n

∑
j γ′j. Clearly, we then have:

∑
i γi = 0. The equations of the SH

on the original data are then:

w = w′ and b = b′ −wtc (4)

since we have: 0 = (w′)tx′ + b′ = wt(x− c) + b′ = wtx + b′ −wtc. Because of the
translation invariance, centering the data does not change the decision function.

6

3 On the universality of prototype classification

In the previous section we have shown that a linear classifier with invariance to a
set of natural transformations has some interesting properties. We here show that
linear classifiers satisfying these properties can be represented in a generic form, our
so-called prototype framework.

In the prototype algorithm, one “representative” or prototype is built for each class
from the input vectors. The class of a new input is then predicted as the class of the
prototype which is closest to this input (nearest-neighbor rule). Denoting by p± the
prototypes, we can write the decision function of the classical prototype algorithm
as

g(x) = sign
(
‖x − p−‖2 − ‖x − p+‖2) . (5)

This is a linear classifier since it can be written as g(x) = sign(wtx + b) with

w = p+ − p− and b =
‖p−‖2 − ‖p+‖2

2
(6)

In other words, once the prototypes are known, the SH passes through their average
(p+ + p−)/2 and is perpendicular to them. The prototype classification algorithm
is arguably simple, and also intuitive since it has an easy geometrical interpretation.
We now introduce a generalized notion of prototype classifier, where a shift is allowed
in the decision function.

Definition 2 (Generalized prototype classifier) A generalized prototype clas-
sifier is a learning algorithm whose decision function can be written as

g(x) = sign
(
‖x − p−‖2 − ‖x − p+‖2 + S

)
, (7)

where the vectors p+ and p− are elements of the convex hulls of two disjoint subsets
of the input data and where S ∈ R is an offset (called the shift of the classifier).

From Definition 2 we see that g(x) can be written as g(x) = sign(wtx + b) with

w = p+ − p− and b =
‖p−‖2

−‖p+‖2
+S

2
. Using Proposition 1, we get the following

proposition.

Proposition 3 Any linear classifier that is invariant with respect to unitary trans-
forms, translations, input permutations, label inversion and scaling is a generalized
prototype classifier. Moreover, if the classifier is given in canonical form by αi and

7

b, then the prototypes are given by
p+ = +

∑
yiαi>0 yiαixi

p− = −
∑

yiαi<0 yiαixi

(8)

and the shift is given by

S = 2b + ‖p+‖2 − ‖p−‖2 (9)

Clearly, we have: w = p+−p− =
∑

i yiαixi. In the next three sections, we explicitly
compute the parameters αi and b of some of the most common hyperplane classifiers
that are invariant with respect to the transformations mentioned in Section 2, and
can thus be cast into the generalized prototype framework. These algorithms belong
to three distinct classes: non-margin, hard margin, and soft margin classifiers.

4 Non-margin classifiers

We consider in this section three common classification algorithms which do not
allow a margin interpretation: the mean-of-class prototype classifier which inspired
the present study, the Fisher classifier which is commonly used in statistical data
analysis and the Relevance Vector machine which is a sparse probabilistic classifier.
For convenience, we use the notation γi = yiαi throughout this section.

4.1 Classical prototype classifier

We study here the classification algorithm which inspired the present study. One of
the simplest and most basic example classification algorithms is the mean-of-class
prototype learner (Reed, 1972) which assigns an unseen example x to the class whose
mean, or prototype, is closest to it. The prototypes are here simply the average
example of each class and can be seen as the center of mass of each class assuming
a homogeneous punctual mass distribution on each example. The parameters of the
hyperplane in the dual space are then:

w =
∑

i

γixi and b = −1

2

∑
i=±

∑
Yi

wtxk

ni

(10)

8

where

γi =
yi + 1

2n+

+
yi − 1

2n−
(11)

In the above, we clearly have
∑

i γi = 0, implying that the data does not need
centering. Moreover, the SH is centered (S = 0). One problem arising when using
prototype learners is the absence of a way to refine the prototypes to reflect the actual
structure (e.g. covariance) of the classes. In section 5.2, we remedy this situation by
proposing a novel algorithm for boosted prototype learning.

4.2 Fisher linear discriminant

The Fisher linear discriminant (FLD) finds a direction in the dataset which allows
best separation of the two classes according to the Fisher score (Duda et al., 2001).
This direction is used as the normal vector of the separating hyperplane, the offset
being computed such as to be optimal with respect to the least mean square error.
Following Mika et al. (2003), the FLD is expressed in the dual space as:

w =
∑

i

γixi and b = −1

2

∑
i=±

∑
Yi

wtxk

ni

(12)

The vector γ is the leading eigenvector of Mγ = λNγ, where the between-class
variance matrix is defined as: M = (m− −m+)(m− −m+)t and the within-class
variance matrix as: N = KKt −

∑
i=± nimim

t
i. The Gram matrix of the data is

computed as: Kij = xt
ixj and the means of each class are defined as: m± = 1

n±
Ku±

where u± is a vector of size n with value 0 for i|yi = ∓1 and value 1 for i|yi = ±1.
In most applications, in order to have a well-conditioned eigenvalue problem, it may
be necessary to regularize the matrix N according to N → N + CI where I is the
identity matrix.

4.3 Relevance vector machine

The Relevance vector machine (RVM) is a probabilistic classifier based upon sparse
Bayesian inference (Tipping, 2001). The offset is included in w =

∑n
i=0 γixi using

the convention: γ0 = b and extending the dimensionality of the data as xi|0 =
1 ∀i = 1, . . . , n, yielding:

w =
n∑

i=1

γixi and b = w0 (13)

9

The two classes of inputs define two possible “states” which can be modeled by a
Bernoulli distribution:

p(y|X, γ) =
n∏

i=1

s
1+yi

2
i [1− si]

1−yi
2 with si =

1

1 + exp(−[Cγ]i)
(14)

where Cij = [1|xt
ixj] is the “extended” Gram matrix of the data. An unknown

Gaussian hyperparameter β is introduced to ensure sparsity and smoothness of the
dual space variable γ:

p(γ|β) =
n∏

i=1

N (γi|0, β−1
i) (15)

Learning of γ then amounts to maximizing the probability of the targets y given the
patterns X with respect to β according to:

p(y|X, β) =

∫
p(y|X, γ)p(γ|β)dγ (16)

The Laplace approximation is used to approximate the integrand locally using a
Gaussian function around its most probable mode. The variable γ is then determined
from β using Equation (15). In the update of β, some βi →∞, implying an infinite
peak of p(γi|βi) around 0, or equivalently γi = 0. This feature of the RVM ensures
sparsity and defines the Relevance Vectors (RVs): βi < ∞⇔ xi ∈ RV .

5 Hard margin classifiers

In this section we consider classifiers which base their classification upon the concept
of margin stripe between the classes. We consider the state-of-the-art support vec-
tor machine, and also develop a novel algorithm based upon boosting the classical
mean-of-class prototype classifier. As presented here, these classifiers need a linearly
separable dataset (Duda et al., 2001).

5.1 Support vector machine

The support vector machine (SVM) is rooted in statistical learning theory (Vapnik,
2000; Schölkopf and Smola, 2002). It computes a separating hyperplane which sepa-
rates best both classes by maximizing the margin stripe between them. The primal

10

hard margin SVM algorithm is expressed as:

min
w,b

‖w‖2

subject to yi(w
txi + b) ≥ 1 ∀i

(17)

The saddle points of the corresponding Lagrangian yield the dual problem:

max
α

[∑
i

αi −
1

2

∑
ij

yiyjαiαjx
t
ixj

]

subject to
∑

i αiyi = 0 and αi ≥ 0 ∀i

(18)

The Karush-Kuhn-Tucker conditions (KKT) of the above problem are written as:

αi[yi(w
txi + b)− 1] = 0 ∀i

The SVM algorithm is sparse in the sense that typically, many αi = 0. We then
define the Support Vectors (SVs) as: xi ∈ SV ⇔ αi 6= 0. The SVM algorithm can
be cast into our prototype framework as follows:

w =
∑

i

αiyixi and b =
〈
yi −wtxi

〉
i|αi 6=0

(19)

where b is computed using the KKT condition by averaging over the SVs. The
update rule for α is given by Equation (18). Using one of the saddle points of the
Lagrangian, multiplying each term of the KKT conditions by

∑
i yi·, we obtain:

b = −
∑

i αiw
txi∑

i αi

(20)

Since
∑

i αiyi = 0, no centering of the data is required. Furthermore, the shift of the
offset of the SH is zero:

S = 2b + ‖p+‖2 − ‖p−‖2 = 2b + (p+ − p−)t(p+ + p−) =

= 2b +
∑

i αiw
txi = 2

(
−

P
i αiw

txiP
i αi

)
+
∑

i αiw
txi = 0

using
∑

i αi =
∑

i |αi| = 2 since αi > 0.

11

5.2 Boosted prototype classifier

Generally speaking, boosting methods aim at improving the performance of a simple
classifier by combining several such classifiers trained on variants of the initial train-
ing sample. The principle is to iteratively give more weight to the training examples
which are hard to classify, train simple classifiers so that they have a small error on
those hard examples (i.e. small weighted error) and then make a vote of the obtained
classifiers (Schapire and Freund, 1997). We consider below how to boost the classi-
cal mean-of-class prototype classifiers in the context of hard margins. The boosted
prototype algorithm that we will develop in this section cannot exactly be cast into
our prototype framework since it is still an open problem to determine the invariance
properties of the boosted prototype algorithm. However, we consider the boosted
prototype classifier as an important example of how the concept of prototype can be
extended.

Boosting methods can be interpreted in terms of margins in a certain feature space.
For this, let H be a set of classifiers (i.e. functions from X to R) and define the set
of convex combinations of such basis classifiers as:

F =

{
f =

l∑
i=1

vihi : l ∈ N, vi ≥ 0,
l∑

i=1

vi = 1, hi ∈ H

}
.

For a function f ∈ F and a training sample (xi, yi), we define the margin as yif(xi).
It is non-negative when the training sample is correctly classified and negative oth-
erwise, and its absolute value gives an idea of the confidence with which f classifies
the sample. The problem to be solved in the boosting scenario is the maximization
of the smallest margin in the training sample (Schapire et al., 1998):

max
f∈F

min
i=1,...,n

yif(xi) (21)

It is known that the solution of this problem is a convex combination of elements of
H (Rätsch and Meir, 2003). Let us now consider the case where the base class H is
the set of linear functions corresponding to all possible prototype learners. In other
words, H is the set of all affine functions that can be written as h(x) = wtx + b
with ‖w‖ = 1. It can easily be seen that Equation (21) using hypotheses of the form
h(x) = wtx + b is equivalent to:

max
f∈F ,b∈R

min
i=1,...,n

yi(f(xi) + b) (22)

12

using hypotheses of the form h(x) = wtx, i.e. without bias. We therefore consider
for simplicity the hypothesis set H := {x 7→ wtx | ‖w‖ = 1}.

Several iterative methods for solving Equation (21) have been proposed (Breiman,
1999; Schapire, 2001; Rudin et al., 2004). We will not pursue further this idea but
what we want to emphasize is the interpretation of such methods. In order to ensure
the convergence of the boosting algorithm when using the prototype classifier as
weak learner, we have to find, for any weights on the training examples, an element
of H that (at least approximately) maximizes the weighted margin:

argmax
h∈H

∑
i

αiyih(xi), (23)

where α represents the weighting of the examples as computed by the boosting
algorithm. It can be shown (see Section 7.2) that under the condition

∑
i αiyi = 0,

the solution of Equation (23) is given by the prototype classifier with:

p± =

∑
Y± αixi∑

i αi

, (24)

We can now state an iterative algorithm for our boosted prototype classifier. This al-
gorithm is an adaptation of AdaBoost∗ (Rätsch and Warmuth, 2005) which includes
a bias term. A convergence analysis of this algorithm can be found in (Rätsch and
Warmuth, 2005). The patterns have to be normalized to lie in the unit ball (i.e.
|wtxi| ≤ 1 ∀w, i with ‖w‖ = 1). The first iteration of our boosted prototype clas-
sifier is the classical mean-of-class prototype classifier. Then, during boosting, the
boosted prototype classifier maintains a distribution of weights αi on the input pat-
terns, and at each step computes the corresponding weighted prototype. Then, the
patterns where the classifier makes mistakes have their weight increased and the pro-
cedure is iterated until convergence. This algorithm maintains a set of weights which
are separately normalized for each class, yielding the following pseudo-code.

1. Determine the scale factor of the whole dataset D: s = maxi(‖xi‖)

2. Scale D such that ‖xi‖ ≤ 1 by applying xi → xi

s
∀i

3. Set the accuracy parameter ε (e.g. ε = 10−2)

4. Initialize the weights α1
i = 1

n±
and the target margin ρ0 = 1

5. Do k = 1, . . . , kmax; compute

(a) the weighted prototypes: p±
k =

∑
i∈Y± αk

i xi

13

(b) the normalized weight vector: wk =
p+

k−p−
k

‖p+
k−p−k‖

(c) the target margin ρk = min
(
ρk−1,

γ+
k +γ−k

2
− ε
)

where γ±k =
∑

i∈C± αk
i yi(w

k)txi)

(d) the weight for the prototype:

vk =
1

8
log

(2 + γ+ − ρk)(2 + γ− − ρk)

(2− γ+ + ρk)(2− γ− + ρk)

(e) the bias shift parameter:

βk =
1

2
log

∑
i∈C+

αk
i e

−vkyi(w
k)txi∑

i∈C− αk
i e

−vkyi(wk)txi

(f) the weight update:

αk+1
i =

αk
i e

−vkyi(w
k)txi+ρkvk

Z±
k

where the normalization Z±
k is such that

∑
i∈C± αk+1

i = 1

6. Determine the aggregated prototypes, normal vector and bias:

p± = s

∑kmax

k=1 vkp±
k∑kmax

k=1 vk
and w =

∑kmax

k=1 vkwk∑kmax

k=1 vk
and b = s

∑kmax

k=1 βk∑kmax

k=1 vk

In the final expression for p±, w and b, the factor
∑

k vk ensures that these quantities
are in the convex hull of the data. Moreover, since the data is scaled by s, the bias and
the prototypes have to be rescaled according to wtx+ b ↔ wt(sx)+ sb. In practice,
it is important to note that the choice of ε must be coupled with the number of
iterations of the algorithm.

We can express the prototypes as a linear combination of the input examples:

p± =
∑
i∈Y±

(∑
k

svk∑
l v

l
αk

i

)
xi

where the scale factor s, the weight update αk
i and the weight vk are defined above.

The weight vector w, however, is not a linear combination of the patterns since
there is a normalization factor in the expression of wk. The decision function at
each iteration is implicitly given by: hk(x) = sign(‖x− p−

k‖2 − ‖x− p+
k‖2) while

at the last iteration of the algorithm, it reverts the usual form: f(x) = wtx+b.

14

6 Soft margin classifiers

The problem with the hard margin classifiers is that when the data is not linearly
separable, these algorithms will not converge at all, or converge to a solution that is
not meaningful (the non-margin classifiers are not affected by this problem). We deal
with this problem by extending the hard margin classifiers to soft margin classifiers.
For this, we apply a form of “regularized” preprocessing to the data, which then
becomes linearly separable. The hard margin classifiers can subsequently be applied
on this processed data. Alternatively, in the case of the SVM, we can also rewrite
its formulation in order to allow for non-linearly separable datasets.

6.1 From hard to soft margins

In order to classify data that is not linearly separable using a classifier that assumes
linear separability (such as the hard margin classifiers), we preprocess the data by
increasing the dimensionality of the patterns xi in the data:

xi → X i =
(

xi
ei√
C

)
(25)

where 1√
C

appears at the ith row after xi (ei is the i-th unit vector), and C is a

regularization constant. The (hard margin) classifier then operates on the patterns
X i instead of the original patterns xi using a new scalar product:

X t
iXj = xt

ixj +
δij

C
(26)

The above corresponds to adding a diagonal matrix to the Gram matrix in order
to make the classification problem linearly separable. The soft margin preprocessing
allows us to extend hard margin classification to accommodate for overlapping classes
of patterns. Clearly, the hard margin case is obtained by setting C →∞. Once the
SH and prototypes are obtained in the space spanned by X i, their counterparts in
the space of the xi are computed by simply ignoring the components added by the
preprocessing.

6.2 Soft margin SVM

In the case of the SVM, we can change the formulation of the algorithm in order to
deal with non-linearly separable datasets (Vapnik, 2000; Schölkopf and Smola, 2002).

15

For this, we first consider the 2−Norm soft margin SVM with quadratic slacks. The
primal SVM algorithm is expressed as:

min
w,b,ξ

[
‖w‖2 + C

∑
i

ξ2
i

]

subject to yi(w
txi + b) ≥ 1− ξi

(27)

where C is a regularization parameter and ξ is the slack variable vector accounting
for outliers: examples which are misclassified or which lie in the margin stripe. The
saddle points of the corresponding Lagrangian yield the dual problem:

max
α

[∑
i

αi −
1

2

∑
ij

yiyjαiαj(x
t
ixj +

δij

C
)

]

subject to
∑

i αiyi = 0 and αi ≥ 0 ∀i

(28)

In the above formulation, the addition of the term
δij

C
to the inner product xt

ixj

corresponds to the preprocessing introduced in Equation (26). The Karush-Kuhn-
Tucker conditions (KKT) of the above problem are written as:

αi[yi(w
txi + b)− 1 + ξi] = 0 ∀i

The SVM algorithm is then cast into our prototype framework as follows:

w =
∑

i

αiyixi and b =
〈
yi(1−

αi

C
)−wtxi

〉
i|αi 6=0

(29)

where b is computed using the first constraint of the primal problem applied on
the margin SVs given by 0 < αi < C and ξi = 0. The update rule for α is given
by Equation (28). Using one of the saddle points of the Lagrangian α = Cξ and
applying

∑
i yi· to the KKT conditions, we get:

b = −
∑

i αiw
txi∑

i αi

−
∑

i α
2
i yi

C
∑

i αi

(30)

Setting C → ∞ in the above equations yields the expression for the hard margin
SVM obtained in Equation (20).

16

We now discuss the case of the 1−Norm soft margin SVM which is more widespread
than the SVM with quadratic slacks. The primal SVM algorithm is written as:

minw,b,ξ

[
‖w‖2 + C

∑
i ξi

]
subject to yi(w

txi + b) ≥ 1− ξi and ξi ≥ 0
(31)

where C is a regularization parameter and ξ is the slack variable vector. The saddle
points of the corresponding Lagrangian yield the dual problem:

maxα

[∑
i αi − 1

2

∑
i,j yiyjαiαjx

t
ixj

]
subject to

∑
i αiyi = 0 and 0 ≤ αi ≤ C

(32)

The KKT conditions are then written as: αi[yi(w
txi + b) − 1 + ξi] = 0 ∀i. The

above allows us to cast the SVM algorithm into our prototype framework:

w =
∑

i

αiyixi and b =
1

|0 < αi < C|
∑

i|0<αi<C

(yi −wtxi) (33)

where b is computed using the first constraint of the primal problem applied on the
margin SVs given by 0 < αi < C and ξi = 0. The update rule for α is given by
Equation (32). In the hard margin case, also obtained for C →∞, the KKT condi-
tions becomes: αi(yi(w

txi + b)− 1) = 0 ∀i. From this, we deduce by application of∑
i yi· to the KKT conditions the expression of the bias obtained for the hard margin

case in Equation (20). Finally, we notice that the 1−Norm SVM does not naturally
yield the scalar product substitution of Equation (26) when going from hard to soft
margins.

7 Relations between classifiers

In this section we outline two relations between the prototype classification algorithm
and the other classifiers considered in this paper. First, in the limit where C → 0,
we show that the soft margin algorithms converge to the classical mean-of-class
prototype classifier. Second, we show that the boosted prototype algorithm converges
to the SVM solution.

17

7.1 Prototype classifier as a limit of soft margin classifiers

We deduce the following proposition as a direct consequence of Proposition 2.

Proposition 4 All soft margin classifiers obtained from linear classifiers whose canon-
ical form is continuous at K = I by the regularized preprocessing of Equation (25)
converge towards the mean-of-class prototype classifier in the limit where C → 0.

7.2 Boosted prototype classifier and SVM

While the analogy between boosting and the SVM has been suggested previously
(Skurichina and Duin, 2002), we here establish that the boosting procedure applied
on the classical prototype classifier yields the hard margin SVM as a solution when
appropriate update rules are chosen.

Proposition 5 The solution of the problem in Equation (21) when H = {h(x) =
wtx + b with ‖w‖ = 1} is the same as the solution of the hard margin SVM.

Proof: Introducing non-negative weights αi, we first rewrite the problem of Equa-
tion (21) in the following equivalent form:

max
f∈F

min
α≥0,

P
αi=1

∑
i

αiyif(xi) .

Indeed, the minimization of a linear function of the αi is achieved when one αi (the
one corresponding to the smallest term of the sum) is one and the others are zero.
Now notice that the objective function is linear in the convex coefficients αi and
also in the convex coefficients representing f , so that by the minimax theorem, the
minimum and maximum can be permuted to give the equivalent problem:

min
α≥0,

P
αi=1

max
f∈F

∑
i

αiyif(xi) .

Using the fact that we are maximizing a linear function on a convex set, we can
rewrite the maximization as running over the set H instead of F which gives:

min
α≥0,

P
αi=1

max
‖w‖2=1, b∈R

∑
i

αiyi(w
txi + b) .

One now notices that when
∑

i αiyi 6= 0, the maximization can be achieved by taking
b to infinity which would be suboptimal in terms of the minimization in the α’s.

18

This means that the constraint
∑

i αiyi = 0 will be satisfied by any non-degenerate
solution. Using this and the fact that:

max
‖w‖=1

∑
i

αiyiw
txi = ‖

∑
i

αiyixi‖2 , (34)

we finally obtain the following problem:

min
α≥0,

P
αi=1

‖
∑

i

αiyixi‖2 , subject to
∑

i

αiyi = 0

This is equivalent to the hard margin SVM problem of Equation (17). �

In other words, in the context of hard margins, boosting a mean-of-class prototype
learner is equivalent to a SVM. It is then straightforward to extend this result to the
soft margin case using the regularized preprocessing of Equation 25. Thus, without
restrictions, the SVM is the asymptotic solution of a boosting scheme applied on
mean-of-class prototype classifiers. The above developments also allow us to state
the following:

Proposition 6 Under the condition
∑

i αiyi = 0, the solution of Equation (23) is
given by the prototype classifier defined by:

p± =

∑
Y± αixi∑

i αi

.

Proof: This is a consequence of the proof of Proposition 5. Indeed, the vector w
achieving the maximum in Equation (34) is given by w =

∑
i yiαixi/‖

∑
i yiαixi‖

which shows that w is proportional to p+ − p−. The choice of b is arbitrary since
one has

∑
i αiyi = 0 so that there exists a choice of b such that the corresponding

function h is the same as the prototype function based on p+ and p−. �

8 Numerical experiments

In the numerical experiments of this section, we first illustrate and visualize our
prototype framework on a linearly separable two-dimensional toy dataset. Second, we
apply the prototype framework to discriminate between two overlapping classes (non-
linearly separable dataset) of responses from a population of artificial neurons.

19

8.1 Two-dimensional toy dataset

In order to visualize our findings, we consider in Figure 1 a two-dimensional linearly
separable toy dataset where the examples of each class were generated by the super-
position of 3 Gaussian distributions with different means, and different covariance
matrices. We compute the prototypes and the SHs for the classical mean-of-class pro-
totype classifier, the Fisher linear discriminant (FLD), the relevance vector machine
(RVM) and the hard margin support vector machine (SVM HM). We also study the
trajectories taken by the “dynamic” prototypes when using our boosted prototype
classifier, and when varying the soft margin regularization parameter for the soft
margin SVM (SVM SM). We can immediately see that the prototype framework in-
troduced in this paper allows one to visualize and distinguish at a glance the different
classification algorithms and strategies. While the RVM algorithm per se does not
allow an intuitive geometric explanation as for instance the SVM (the margin SVs
lie on the margin stripe) or the classical mean-of-class prototype classifier, the pro-
totypes are an intuitive and visual interpretation of sparse Bayesian learning. The
different classifiers yield different SHs, and consequently also different set of proto-
types. As foreseen in theory, the classical prototype and the SVM HM have no shift
in the decision function S = 0, indicating that the SH passes through the middle of
the prototypes. This shift is largest for the RVM, reflecting the fact that one of the
prototypes is close to the center of mass of the entire dataset. This is due to the fact
that the RVM algorithm usually yields a very sparse representation of the γi. In our
example, a single γi, which corresponds to the prototype close to the center of one
of the classes, strongly dominates this distribution, such that the other prototype is
bound to be close to the mean across both classes (the center of the entire dataset).
The prototypes of the SVM HM are close to the SH, which is due to the fact that
they are computed using only the SVs corresponding to exemplars lying on the mar-
gin stripe. When considering the trajectories of the “dynamic” prototypes for the
boosted prototype and the soft margin SVM classifiers, both algorithms start close
to the classical mean-of-class prototype classifier, and converge to the hard margin
SVM classifier. We further study the dynamics associated with these trajectories
in Figure 2. The prototypes and the corresponding SH have a similar behavior in
all cases. As predicted theoretically, the first iteration of boosting is identical to
the classical prototype classifier. However, while the iterations proceed, the boosted
prototypes get further apart from the classical ones, and finally converge as expected
towards the prototypes of the hard margin SVM solution. Similarly, when C → 0,
the soft margin SVM converges to the solution of the classical prototype classifier,
while for C →∞, the soft margin SVM converges to the hard margin SVM.

20

Classical prototype (S=0) FLD (S=0.04)

RVM (S=3.26) SVM HM (S=0)

Boosted prototype SVM SM

Figure 1: Classification on a two-dimensional linearly separable toy dataset. For the
classical prototype classifier, FLD, RVM and SVM HM, the prototypes are indicated
by the open circles, the SH is represented by the line, and the offset in the decision
function is indicated by the variable S. For the boosted prototype and the SVM SM,
the trajectories indicate the evolution of the prototypes during boosting and when
changing the soft margin regularization parameter C respectively.

8.2 Population of artificial neurons

To test our prototype framework on more realistic data, we decode the responses
from a population of 6 independent artificial neurons. The responses of the neurons
are assumed to have a Gaussian noise distribution around their mean response, the

21

Boosted prototype

SVM SM

b/
||w

||

b/
||w

||

regularizer C
|| ∆

 p
||

|| ∆
 p

||

bo
os

tin
g

ite
ra

tio
n

re
gu

la
riz

er
 C

Classical prot.

SVM HMSVM HM

Classical prot.

SVM HM Classical prot. SVM HM Classical prot.

boosting iteration
1 1000 1000010010

boosting iteration
1 1000 1000010010

0

2

1

-0.2

-0.1

-0.2

-0.1

0

2

1

1

1000
10000

100
10

1e-10 1e-5 1 1e5 1e10

regularizer C
1e-10 1e-5 1 1e5 1e10

1e-10
1e-5

1
1e5

1e10

0.7
0.8

0.7
0.6

0.8
0.70.6

0.7
w /||w||2 w /||w||1w /||w||2 w /||w||1

Classical prototypeClassical prototype

SVM HM SVM HM

Figure 2: Dynamic evolution and convergence of the boosted prototype classifier (first
column) and the soft margin SVM classifier (second column) for the two-dimensional
linearly separable toy dataset. The first row shows the norm of the difference between
the “dynamic” prototypes and the prototype of either the classical mean-of-class pro-
totype classifier or the hard margin SVM. The second row illustrates the convergence
behavior of the normal vector w of the SH, while the third row shows the convergence
of the offset b of the SH.

variance being proportional to the mean. We use our prototype framework to dis-
criminate between two stimuli using the population activity they elicit. This dataset
is not linearly separable, and the pattern distributions corresponding to both classes
may overlap. We thus consider the soft margin preprocessing for the SVM and the
boosted prototype classifier. We first find the value of C minimizing the training

22

error of the SVM SM, and then use this value to compute the soft margin SVM and
the boosted prototype classifiers. As expected from the hard margin case, we find in
Figure 3 that the boosted prototype algorithm starts as a classical mean-of-class pro-
totype classifier, and converges towards the soft margin SVM. In order to visualize

|| ∆
 p

||
Boosted prototype SM

bo
os

tin
g

ite
ra

tio
n

b/
||w

||

w /||w||2

Classical prototype

SVM SM

SVM SM

Classical prot.

20

10

boosting iteration

0
1 1000 1000010010

10

20

15

boosting iteration
1 1000 1000010010

0.4
0.5

0.6
-0.7

-0.8

1

1000

10000

100

10

w /||w||1

Classical prototype

SVM SM

Figure 3: Dynamical evolution and convergence of the boosted prototype classifier
in the soft margin case. See caption of Figure 2.

the discrimination process, we project the neural responses onto the axis defined by
the prototypes (i.e. the normal vector w of the SH). Equivalently, we compute the
distributions of the distances δ(x) = wtx+b

‖w‖ of the neural responses to the SH. Figure
4 shows these distance distributions for the classical prototype classifier, the FLD,

23

the RVM, the soft margin SVM and the boosted prototype classifier. The projected
prototypes have locations similar to what we observed for the toy dataset for the
prototype classifier and the FLD. For the SVM, they can even be closer to the SH
(δ = 0) since they only depend on the SVs, which may here also include exemplars
inside of the margin stripe (and not only on the margin stripe as for the hard margin
SVM). For the RVM, however, the harder classification task (high-dimensional and
non-linearly separable dataset) yields a less sparse distribution of the γi than for the
toy dataset. This is reflected by the fact that none of its prototypes lies in the vicin-
ity of the mean over the whole dataset (δ = 0). As already suggested in Figure 3,
we can clearly observe how the boosted prototypes evolve from the prototypes of the
classical mean-of-class prototype classifier to converge towards the prototypes of the
soft margin SVM. Most importantly, the distance distributions allow us to compare
our prototype framework directly with signal detection theory (Green and Swets,
1966; Wickens, 2002). Although the neural response distributions were constructed
using Gaussian distributions, we see that the distance distributions are clearly not
Gaussian. This makes most analysis such as “Receiver Operating Characteristic”
not applicable in our case. However, the different algorithms from machine learning
provide a family of thresholds that can be used for discrimination, independently of
the shape of the distributions. Furthermore, the distance distributions are dependent
on the classifier used to compute the SH. This example illustrates one of the novelties
of our prototype framework: a classifier-specific dimensionality reduction. In other
words, we here visualize the space the classifiers use to discriminate, i.e. the cut
through the data space provided by the axis spanned by the prototypes. As a conse-
quence, the amount of overlap between the distance distributions is different across
classifiers. Furthermore, the shape of these distributions varies: the SVM tends to
cut the data such that many exemplars lie close to the SH, while for the classical
prototype, the distance distributions of the same data are more centered around the
means of each class. The boosted prototype classifier gives us here an insight on
how the distance distribution of the mean-of-class prototype classifier evolves itera-
tively into the distance distribution of the soft margin SVM. This illustrates how the
different projection axes are non-trivially related to generate distinct class-specific
distance distributions.

9 Discussion

We introduced a novel classification framework—the prototype framework—inspired
by the mean-of-class prototype classifier. While the algorithm itself is left unchanged

24

distance to SH

bo
os

tin
g

ite
ra

tio
n

1

1000

100

10

10000

fr
eq

ue
nc

y

0

0.1

0.1
fr

eq
ue

nc
y

0

0.1

0.1

fr
eq

ue
nc

y

0

0.1

0.1

fr
eq

ue
nc

y

0

0.1

0.1

Classical prototype

SVM SM

Boosted prototype SM

FLD

RVM

2010-20 -10 0

Figure 4: Distance distributions of the neural responses to the SH. For the boosted
prototype classifier (second row), we indicate the distance distributions as function of
the iterations of the boosting algorithm. The trajectory of the projected “dynamic”
prototypes is represented by the white line. For the remaining classifiers, we plot
the distributions of distances for both classes separately, and also the position of the
projected prototypes (vertical dotted lines).

25

(up to a shift in the offset of the decision function), we computed the generalized
prototypes using methods from machine learning. We showed that any linear clas-
sifier with invariances to unitary transformations, translations, input permutations,
label inversions and scaling can be interpreted as a generalized prototype classifier.
We introduced a general method to cast such a linear algorithm into the prototype
framework. We then illustrated our framework using some algorithms from machine
learning such as Fisher linear discriminant, the relevance vector machine (RVM), and
the support vector machine (SVM). In particular, we obtained through the prototype
framework a visualization and a geometrical interpretations for the hard-to-visualize
RVM. While the vast majority of algorithms encountered in machine learning satisfy
our invariance properties, the main class of algorithms that are ruled out are online
algorithms such as the Perceptron since they depend on the order of presentation of
the input patterns.

We demonstrated that the SVM and the mean-of-class prototype classifier, despite
their very different foundations, could be linked: the boosted prototype classifier
converges asymptotically towards the SVM classifier. As a result, we also obtained
a simple iterative algorithm for SVM classification. Also, we showed that boosting
could be used to provide multiple optimized examples in the context of prototype
learning according to the general principle of divide and conquer. The family of
optimized prototypes was generated from an update rule refining the prototypes
by iterative learning. Furthermore, we showed that the mean-of-class prototype
classifier is a limit of the soft margin algorithms from learning theory when C →
0. In summary, both boosting and soft margin classification yield novel sets of
“dynamic” prototypes paths: through time (the boosting iteration) and though the
soft margin trade-off parameters C respectively. These prototype paths can be seen
as an alternative to the “chorus of prototypes” approach (Edelman, 1999).

We considered classification of two classes of inputs, or equivalently, we discriminated
between two classes given the responses corresponding to each one. However, when
faced with an estimation problem, we need to choose one class among multiple classes.
For this, we can extend our prototype framework by considering a “1-vs-rest” strategy
(Duda et al., 2001; Vapnik, 2000). The prototype of each class is then computed by
discriminating this class against all the remaining ones. Repeating this procedure for
all the classes yields an ensemble of prototypes, one for each class. These prototypes
can then be used for multiple class classification, or estimation, using again the
nearest-neighbor rule.

Our prototype framework can be interpreted as a two-stage learning scheme. First
from a learning perspective, it can be seen as a complicated and time-consuming

26

training stage that computes the prototypes. This stage is followed by a very simple
and fast nearest-prototype testing stage for classification of new patterns. Such
a scheme can account for a slow training phase followed by a fast testing phase.
Albeit it is beyond the scope of this paper, such a behaviour may be argued to
be biologically plausible. Once the prototypes are computed, the simplicity of the
decision function is certainly one advantage of the prototype framework. This paper
shows that it is possible to include sophisticated algorithms from machine learning
such as the SVM or the RVM into the rather simple and easy to visualize prototype
formalism. Our framework then provides an ideal method for directly comparing
different classification algorithms and strategies, which could certainly be of interest
in many psychophysical and neurophysiological decoding experiments.

Acknowledgments

The authors would like to thank E. Simoncelli, G. Cottrell, M. Jazayeri, and C.
Rudin for helpful comments on the manuscript. A.B.A.G was supported by a grant
from the European Union (IST 2000-29375 COGVIS) and by an NIH training grant
in Computational Visual Neuroscience (EYO7158).

A Proof of Proposition 1

We work out the implications for a linear classifier to be invariant with respect to
the transformations mentioned in Section 2.

Invariance w.r.t. scaling means that the pairs (w1, b1) and (w2, b2) correspond to the
same decision function, that is sign(w1

tx + b1) = sign(α) sign(w2
tx + b2), ∀x ∈ X if

and only if there exists some α 6= 0 such that w1 = αw2 and b1 = αb2.

We denote by (wX , bX) the parameters of the hyperplane obtained when trained
on data X. We show below that invariance to unitary transformations implies that
the normal vector to the decision surface wX lies in the span of the data. This
is remarkable since it allows a dual representation and it is a general form of the
“Representer Theorem” (see also Kivinen et al. (1997)).

Lemma 1 (Unitary invariance) If A is invariant by application of any unitary
transform U, then there exists γ such that wX = Xγ is in the span of the input data

27

and bX = bUX depends on the inner products between the patterns of X and on the
labels.

Proof: Unitary invariance can be expressed as:

wt
Xx + bX = wt

UXUx + bUX .

In particular this implies bUX = bX (take x = 0), and thus bX does not depend on
U . This shows that bX can only depend on inner products between the input vectors
(only the inner products are invariant by U since (Ux)t(Uy) = xty) and on the
labels. Furthermore we have the condition:

wt
Xx = wt

UXUx ,

which implies (since U is self-adjoint):

wUX = UwX ,

so that w is transformed according to U. We now decompose wX as a linear com-
bination of the patterns plus an orthogonal component:

wX = Xγ + v ,

where v ⊥ span{X}, and similarly we decompose:

wUX = UXγU + vU ,

with vU ⊥ span{UX}. We have using wUX = UwX :

UXγU + vU = UXγ + Uv

and since Uv ⊥ span{UX}, then vU = Uv and Xγ = XγU .

Now, we introduce two specific unitary transformations. The first one, U, performs
a rotation of angle π along an axis contained in span{X} and the second one, U′,
performs a symmetry with respect to a hyperplane containing this axis and v. Both
transformations have the same effect on the data. However, they have opposite effect
on the vector v. This means that in order to guarantee invariance, we need to have
v = 0, which shows that w is in the span of the data: wX = Xγ. �

Next, we show that, in addition to the unitary invariance, invariance with respect to
translations (change of origin) implies that the coefficients of the dual expansion of
wX sum to zero.

28

Lemma 2 (Translation and unitary invariance) If A is invariant by unitary
transforms U and by translations v ∈ X , then there exists u such that wX = Xu and
uti = 0 where i denotes a column vector of size n whose entries are all 1. Moreover,
we also have bX+vit = bX −wt

Xv.

Proof: The invariance condition means that for all X, v and x, we can write:

wt
Xx + bX = wt

X+vit(x + v) + bX+vit = wt
X+vitx + wt

X+vitv + bX+t1T

We thus obtain:

(wX −wX+vit)
tx = −bX + bX+t1T + wt

X+vitv

which can only be true if wX = wX+vit and bX+t1T = bX −wt
X+vitv. In particular,

since we can write by the previous lemma wX = XγX and wX+vit = (X+vit)γX+vit ,
we have for all v:

wX = XγX = XγX+vit + vitγX+vit .

Taking the center of mass of the data, t = − 1
n
Xi, we obtain:

wX = XγX = X(γX+vit −
1

n
iitγX+vit) = Xu ,

where, denoting by u the parenthetical factor of X in the right hand side, we can
then compute that uti = 0 which concludes the proof. �

For the sake of clarity of notation, from now on we omit the explicit dependency of
the separating hyperplane on the dataset and write (w, b) instead of (wX , bX). As a
consequence from the above lemmas, have that a linear classifier which is invariant
w.r.t. unitary transformations and translations, produces a decision function g which
can be written as:

g(x) = sign

(
n∑

i=1

γix
t
ix + b

)
,

with:
n∑

i=1

γi = 0,
n∑

i=1

|γi| = 2 .

since the decision function is not modified by scaling, one can normalize the γi to
ensure that the sum of their absolute values is equal to 2.

Invariance w.r.t. label inversion means the γi are proportional to yi, but then the αi

are not affected by an inversion of labels which means that they only depend on the
products yiyj (which indicate the differences in label).

29

Invariance w.r.t. input permutation means that in the case where xt
ixj = δij, since

the patterns are indistinguishable, so are the αi. Hence the αi corresponding to
duplicate training examples that have the same label should be the same value, and
from the other constraints we immediately deduce that αi = 1/n±. This finally
proves Proposition 1.

B Proof of Proposition 2

Notice that adding δij/C to the inner products means replacing K by K+ I/C. The
result follows from the continuity, and from the invariance by scaling which means
that we can as well use I + CK which converges to I when C → 0, and for I the
obtained αi were computed in Proposition 1.

References

Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.

Breiman, L. (1999). Prediction games and arcing algorithms. Neural Computation,
11(7):1493–1518.

Duda, R., Hart, P., and Stork, D. (2001). Pattern Classification. John Wiley & Sons,
second edition.

Edelman, S. (1999). Representation and Recognition in Vision. MIT Press.

Green, D. and Swets, J. (1966). Signal detection theory and psychophysics. John Wiley
and Sons.

Hinton, G. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–7.

Jolliffe, I. (2002). Principal Component Analysis. Springer, second edition.

Kivinen, J., Warmuth, M., and Auer, P. (1997). The perceptron algorithm vs. winnow:
linear vs. logarithmic mistake bounds when few input variables are relevant. Artificial
Intelligence, 97(1-2):325–343.

Lee, D. and Seung, H. (1999). Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791.

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., and Müller, K.-R. (2003). Constructing
descriptive and discriminative non-linear features: Rayleigh coefficients in kernel feature

30

spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623–
628.

Rätsch, G. and Meir, G. (2003). An introduction to boosting and leveraging. In Springer,
editor, Advanced Lectures on Machine Learning, volume LNAI 2600, pages 119–184.

Rätsch, G. and Warmuth, M. (2005). Efficient margin maximization with boosting. Journal
of Machine Learning Research, 6:2131–2152.

Reed, S. (1972). Pattern recognition and categorization. Cognitive Psychology, 3:382–407.

Rosch, E., Mervis, C., Gray, W., Johnson, D., and Boyes-Braem, P. (1976). Basic objects
in natural categories. Cognitive Psychology, 8:382–439.

Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290:2323–2326.

Rudin, C., Daubechies, I., and Schapire, R. (2004). The dynamics of adaboost: Cyclic
behavior and convergence of margins. Journal of Machine Learning Research, 5:1557–
1595.

Schapire, R. (2001). Drifting games. Machine Learning, 43(3):265–291.

Schapire, R. and Freund, Y. (1997). A decision theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55:119–139.

Schapire, R., Freund, Y., Bartlett, P., and Lee, W. (1998). Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–
1686.

Schölkopf, B. and Smola, A. (2002). Learning with Kernels. MIT Press.

Skurichina, M. and Duin, R. (2002). Bagging, boosting and the random subspace method
for linear classifiers. Pattern Analysis & Applications, 5:121–135.

Tipping, M. (2001). Sparse bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211–214.

Vapnik, V. (2000). The Nature of Statistical Learning Theory. Springer, second edition.

Wickens, T. (2002). Elementary Signal Detection Theory. Oxford University Press.

31

